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ABSTRACT: We apply artificial neural networks (ANNs) to improve the modeling of
on-wafer open-short-load-thru (OSLT) standards used for calibrating vector network ana-
lyzers. The ANNs are trained with measurement data obtained from a benchmark multiline
thru-reflect-line (TRL) calibration. We assess the accuracy of an OSLT calibration using
these ANN-modeled standards, and find that it compares favorably (less than a 0.02
difference in magnitude) to the benchmark multiline TRL calibration over a 40 GHz
bandwidth. We also quantify the training errors and training times as a function of both the
number of training points and the number of neurons in the hidden layer. © 2000 John
Wiley & Sons, Inc. Int J RF and Microwave CAE 10: 319-328, 2000.
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I. INTRODUCTION

The open-short-load-thru (OSLT) calibration [1]
is one of the most widely used techniques for
calibrating vector network analyzers (VNAs). It is
mainly used with devices that contain coaxial or
waveguide interfaces, but is also often applied to
on-wafer environments such as microstrips and
coplanar waveguide (CPWs). The calibration pro-
cedure consists of a “thru” connection of the two
VNA ports, as well as the measurement (on both
ports) of three one-port standards, typically a
nominal open, a nominal short, and a nominally
matched load. None of these standards needs to
be ideal, but we must know their reflection coef-
ficients. In practice, our definition of these re-
flection coefficient values is typically drawn from
a model of the standard.

Manufacturers of calibration kits usually pro-
vide a description of the standards based on
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equivalent circuit parameters, known as calibra-
tion kit parameters {2, 3] or calibration compo-
nent coefficients [4]. These parameters assume
single, real values for both load impedance and
characteristic impedance, and describe the open-
and short-circuit terminations as frequency poly-
nomials of capacitance and inductance, respec-
tively. With coaxial and waveguide standards, the
equivalent circuit approximations have worked to
the satisfaction of most users, but for on-wafer
standards, a recent study [5] reported errors in
scattering parameters of up to 0.5. Considering
that the maximum possible value for passive de-
vices is a magnitude of 1, such errors are clearly
unacceptable. DeGroot et al. [6] recently ad-
dressed this issue by developing a general descrip-
tion of transmission lines to express offset reflec-
tion standards and finite-length thru standards
that accounts for lossy environments with com-
plex impedance. Implementing this general de-
scription, however, still requires physical models
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or measurement data of each for the individual
standards.

With these encumbrances in mind, we have
implemented a technique involving artificial neu-
ral networks (ANNs) to model OSLT calibration
standards. This approach allows us to deveclop
compact descriptions of the standards without
having to formulate detailed physical models.
These ANN descriptions have a number of advan-
tages over using calibrated measurement data
files, namely, they are more compact and less
susceptible to noisc inherent in measured data,
and they can model the standards more accu-
rately at interpolated frequencies, especially for
sparse data sets.

The following sections describe our implemen-
tation of ANNs to model the on-wafer OSLT
standards, although these methods can just as
easily be used for any lumped-element calibration
standards on any variety of substrates, such as
alumina and Duroid. We quantify the training
errors as a function of training points and the
number of neurons in the hidden layer, and as-
scss the accuracy of the OSLT calibration using
these ANN-modeled standards. Through various
comparisons, we show that ANN models offer
several advantages over calibrated measurement
data files.

Il. ARTIFICIAL NEURAL NETWORKS

ANNSs have been applicd to diverse arcas such as
speech and pattern recognition, financial and eco-
nomic forecasting, telecommunications, and
nuclear power plant diagnosis, and have just re-
cently been introduced into the arca of mi-
crowave engineering [7-10]. In particular, re-
searchers have successfully used ANNs to model
microstrip vias [11], packaging and interconnects
[12], spiral inductors [13], MESFET devices [14],
CPW circuit components [15], the effective di-
clectric constant of microstrip lines [16], and HBT
amplifiers [17], to name just a few.

The ANN architecture used in this work is a
feedforward, three-layer perceptron structure
(MLP3) consisting of an input layer, a hidden
layer, and an output layer, as shown in Figure 1.
The hidden layer allows complex models of in-
put—output relationships. The mapping of these
relationships is given by [11]

Y = g[W, - g(W, - X)]
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Figure 1. Artificial ncural nctwork architecture.

where X is the input vector, Y is the output
vector, and W, and W, are the weight matrices
between the input and hidden layers and between
the hidden and output layers, respectively. The
function g{u) is a nonlinear sigmoidal activation
function given by

glu) = I + exp(—u)

where u is the input to a hidden neuron. Accord-
ing to [10], an MLP3 with one hidden sigmoidal
layer is able to model almost any physical func-
tion accurately, provided that a sufficient number
of hidden neurons are available.

ANNs learn relationships among sets of
input—output data which are characteristic of the
device or system under consideration. After the
input vectors are presented to the input neurons
and the output vectors are computed, the ANN
outputs arc compared to the desired outputs, and
errors are calculated. Error derivatives are then
calculated and summed for cach weight until all
of the training sets have been presented to the
network. The error derivatives are used to update
the weights for the neurons, and training contin-
ues until the errors reach prescribed values.

Illl. METHODOLOGY

Although multiple inputs and outputs are possi-
ble with this ANN architecture, we made use of
one input paramcter (frequency) and two output
parameters (the real and imaginary components)
for each measured scattering parameter. Since wc
measure reflection coefficients for three termina-



tions at both ports and all four scattering parame-
ters of the thru connection, we end up with ten
ANN models. In this study, we utilized software
developed by Zhang et al. [18] to construct our
ANN models.

To model the on-wafer OSLT standards, we
trained the ANNs with measurcment data ob-
tained from a benchmark multiline TRL calibra-
tion carried out with the NIST MultiCal software
[19]. Multiline TRL is a highly accurate means of
VNA calibration and is cspecially useful for on-
wafer environments since the characteristic
impedance can easily be calculated from dimen-
sional mecasurcments of the standards, which sim-
ply consist of a number of transmission lines of
varying linc lengths and a highly reflective termi-
nation. The disadvantage of this calibration
method is that it requires a large amount of real
cstate on the wafer, due to the numerous long
lines required for an accurate calibration. This is
why compact calibration kits, such as OSLT, arc
usually preferred for on-wafer applications. The
tradeoff is that the kits with smaller, lumped-ele-
ment artifacts tend to be less accurate since it is
more difficult to calculate the reflection coeffi-
cients of the standards. But if the compact cali-
bration kits can be characterized using a bench-
mark calibration, such as multiline TRL, and they
can be reproduced on other wafers with little
variation, it is possible to perform an accurate
on-wafer OSLT calibration.

Once the OSLT standards arc characterized,
the dilemma is whether to develop a model for
each of the standards or to directly use the mea-
surement data obtained from the benchmark cali-
bration. We will show that ANN models allow us
to develop compact descriptions of the standards
without having to formulate detailed physical
models, and that these ANN descriptions have a
number of advantages over large, calibrated mea-
surement data files.

A. Modeling the Standards

In this study, the OSLT and multiline TRL stan-
dards and devices were constructed of a CPW
transmission line fabricated from 1.5 pm gold
conductors cvaporated on 500 um thick semi-in-
sulating GaAs [20]; the gold center conductor was
73 pum wide, and separated from the ground
plane by 49 um gaps. The five-line standards
included a 0.55 mm thru line and four additional
lines that were 2.135, 3.2, 6.565, and 19.695 mm
longer. All of the standards were measured using
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on-wafer probes. The OSLT open circuit was
defined by lifting the probe heads off the wafer,
as recommended by probe manufacturers. For
cach standard, we measured scattering parame-
ters at 192 frequencies from 0.5 to 40 GHz.

Once the OSLT standards had been character-
ized using a multiline TRL calibration, we deter-
mincd how many neurons in the hidden layer
were required to develop accurate ANN models.
Our first experiment was to vary the number of
neurons in the hidden layer for cach of the stan-
dards. We started with one hidden neuron, noting
the training error reported by the software after
training was completed, and repeated this process
while incrementing the number of hidden neu-
rons until we reached a total of ten neurons. We
performed this experiment on cach of the stan-
dards using all 192 measured frequencies as train-
ing data. Figurc 2 illustrates the results for §,, of
the open, short, and load, and for §,, of the thru.
Each of the standards had different errors, but no
discernible improvements could be seen for more
than five neurons. We also measurced the training
time for each standard while varying the number
of hidden neurons, and found that the training
time varied linearly with the number of hidden
neurons. One hidden neuron required approxi-
mately 2 s of training time on the computer used,
while ten hidden neurons required about 20 s of
training time. These training times undoubtedly
vary, depending on the speed of the computer,
but the values give a relative idea of how much
time is required per hidden neuron.

After we decided that five hidden neurons were
sufficient, we studied how many training points
were required to accurately model cach standard.
We trained each standard using all 192 points,
and then tried smaller subsets of the measure-
ment points, namely, 3, 5, 9, and 41 points. After
the models for each of the standards were trained
for the five sets of data, we compared them to the
measurement data. To our surprise, we found
that we could achieve good accuracy with as few
as nine training points, and that as few as five
training points were adequate for the open and
short. Figures 3 and 4 show the magnitudes of the
vector differences of S, (JAS;, ) between the
measured data and the ANN models for various
numbers of training points for the open and load
standards, respectively. From these two plots, we
see that the ANN model of the open standard
agrces with measurement data to within 0.015
using as few as five training points. And the ANN
model of the load standard agrees with measure-
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Figure 2. Training error versus the number of neurons in the hidden layer for various

calibration standards.

ment data to within 0.04 for most frequencies
using as few as nine training points.

Our observation that so few training points are
sufficient to model our standards highlights an
important advantage in using ANN models over
calibrated measurement data files. We found that
it is possible to cut down on calibration times by
measuring only a few frequency points and devel-
oping an ANN model, rather than measuring
numerous points and carrying around large data
files. The ANN model, trained on only a few

0.16 4

measurement points, can be much more accurate
than linearly interpolating, as is commonly done
in practice. For example, if one were to measure
the load standard at five points and perform
linear interpolation between frequencies, as
shown in Figure 5, the maximum error would be
0.045, as opposed to only 0.016 for the ANN
model trained using the same five points.

Next, we developed ANN models for each of
the OSLT standards using five hidden ncurons
and all 192 measured points since we already had
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Figure 3. Magnitude of the ANN-modeled reflection coefficient errors (JAS, [} for the
open standard with varying numbers of training points.
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Figure 4. Magnitude of the ANN-modeled reflection coefficient errors (|SA |, ) for the load
standard with varying numbecrs of training points.

the data on hand. Figures 6—8 show the magni-
tude and phase of §,, using both measured and
ANN model data for the open, short, and load
standards, respectively. Figure 9 shows the magni-
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Figure 5. Comparison of magnitude and phase of the
reflection coefficients [|S,] and arg($,,)] for the load
standard using an ANN model trained with five points,
lincar intcrpolation with TRL using the same five
points, and TRL with 192 points as the reference.

tude and phase of S, using the measured and
ANN model data for the thru standard. Notice
that the ANN models for each standard follow
the trends of the mecasured data, but avoid the
scatter of multiline TRL calibrated measure-
ments. Whether or not this scatter is real, we see
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Figure 6. Magnitude and phase of the reflection co-
efficients [|S,,| and arg(S,,)] for the open standard
measured by multiline TRL and ANN modeling.
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Figure 7. Magnitude and phase of the reflection co-
efficients [[S,,] and arg(§,,)] for the short standard
measured by multiline TRL and ANN modeling.
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Figure 8. Magnitude and phase of the reflection co-
cfficients {|S,,| and arg(S,;)] for the load standard
measured by multiline TRL and ANN modeling.
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Figure 9. Magnitude and phase of the transmission
coefficients [|S,,| and arg(S,)] for the thru standard
measured by multiline TRL and ANN modeling.

that ANNs follow general trends, but omit the
noise, which is usually desirable in a model. In
Figures 6 and 7, the measured magnitudes of the
reflection coefficient for the open and short stan-
dards are slightly greater than 1, which is not
possible for passive devices. This discrepancy can
be attributed to random errors in the TRL cali-
bration, which are typically as high as 0.02 at 40
GHz. Fortunately, our measurements never ex-
ceed 1 by more than this repeatability error. A
similar argument can be made for the transmis-
sion coefficients of the thru standard.

B. Calibration Comparison

We performed two OSLT calibrations: one using
the calibrated measurement data of the stan-
dards, and the other using the ANN models of
the standards. We calibrated a 19 mm CPW
transmission line using both OSLT calibrations,
and compared the results to measurements cali-
brated directly using the benchmark multiline
TRL calibration. Figure 10 compares the magni-
tude and phase of the scattering parameter data
(15,1 arg(S,,), 1S,,}, arg(S,,)] for all three calibra-
tions. The agreement is remarkably good.
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Figure 10. Magnitude and phase of the scattering parameters of a calibrated 19 mm CPW

transmission linc.

To obtain a more quantitative idea of the
differences, we plotted the maximum vector dif-
ferences of the scattering parameters (JAS,[) for
the 19 mm linc between the two OSLT calibra-
tions and the multiline TRL calibration. Figure

11 illustrates the differences. Not surprisingly, the
OSLT calibration, using the calibrated measure-
ment data, compares better to the multiline TRL
calibration since they both make use of the same
calibration data. However, the OSLT using the
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Figure 11. Magnitude of the scattering parameter differences (MS,-,-D of a calibrated 19

mm CPW transmission line.
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ANN models still compares well with less than a
0.02 difference in magnitude at all frequencics.
The difference here does not necessarily mean
that the OSLT, using ANN models, is in error.
The differences could be due to the presence of
noise in the TRL calibration that the ANN mod-
els avoided. Regardless of the source of error, a
0.02 difference between two on-wafer calibrations
spanning 40 GHz is impressive, considering that
the repeatability between two multiline TRL cali-
brations is usually on the order of 0.015.

IV. CONCLUSIONS

We have successfully applied ANNs to model
on-wafer OSLT standards, and have shown that
such a calibration compares favorably (less than a
0.02 difference in magnitude) to the benchmark
multiline TRL calibration. In modeling these
standards, we quantified the training errors and
training times as a function of both the number
of training points and the number of neurons in
the hidden layer. We found that five neurons in
the hidden layer of an MLP3 architecture and
that fewer than ten training points were sufficient
to accurately model our standards.

In practice, ANN-modeled calibration stan-
dards can be easily implemented using existing or
custom software packages. In our case, we uti-
lized MultiCal, a free program developed by the
National Institute of Standards and Technology,
to perform our benchmark multiline TRL calibra-
tion. The internal software on any commercial
network analyzer can also be used if the user has
confidence in another calibration method such as
single-line TRL or LRM (line-reflect-match).
Then, once the OSLT standards are measured,
one of a number of ANN programs may be used
to model the standards. We used software devel-
oped by Zhang et al. [18] to construct our ANN
models. Finally, a program that can perform OSLT
calibrations using exported ANN models is re-
quired. We wrote custom software to perform this
task, using the equations found in [1] and [6] to
perform the OSLT calibrations.

We have shown that ANN models offer a
number of advantages over using calibrated mea-
surement data files or equivalent circuit models,
namely, the following.

1. They do not require detailed physical mod-
els.

2. Calibration times can be reduced since only
a few training points are required to accu-
rately model the standards.

3. ANN model descriptions are much more
compact than large measurement data files.

4. ANN models, trained on only a few mea-
surement points, can be much more accu-
rate than direct calibrations, when limited
data are available.

5. They are less susceptible to the noise inher-
ent in measured data.
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